Noninvasive measurement of cardiac stroke volume using pulse wave velocity and aortic dimensions: a simulation study
نویسنده
چکیده
BACKGROUND Concerns about the cost-effectiveness of invasive hemodynamic monitoring in critically ill patients using pulmonary artery catheters motivate a renewed search for effective noninvasive methods to measure stroke volume. This paper explores a new approach based on noninvasively measured pulse wave velocity, pulse contour, and ultrasonically determined aortic cross sectional area. METHODS The Bramwell-Hill equation relating pulse wave velocity to aortic compliance is applied. At the time point on the noninvasively measured pulse contour, denoted th, when pulse amplitude has fallen midway between systolic and diastolic values, the portion of stroke volume remaining in the aorta, and in turn the entire stroke volume, can be estimated from the compliance and the pulse waveform. This approach is tested and refined using a numerical model of the systemic circulation including the effects of blood inertia, nonlinear compliance, aortic tapering, varying heart rate, and varying myocardial contractility, in which noninvasively estimated stroke volumes were compared with known stroke volumes in the model. RESULTS The Bramwell-Hill approach correctly allows accurate calculation of known, constant aortic compliance in the numerical model. When nonlinear compliance is present the proposed noninvasive technique overestimates true aortic compliance when pulse pressure is large. However, a reasonable correction for nonlinearity can be derived and applied to restore accuracy for normal and for fast heart rates (correlation coefficient > 0.98). CONCLUSIONS Accurate estimates of cardiac stroke volume based on pulse wave velocity are theoretically possible and feasible. The precision of the method may be less than desired, owing to the dependence of the final result on the square of measured pulse wave velocity and the first power of ultrasonically measured aortic cross sectional area. However, classical formulas for propagation of random errors suggest that the method may still have sufficient precision for clinical applications. It remains as a challenge for experimentalists to explore further the potential of noninvasive measurement of stroke volume using pulse wave velocity. The technique is non-proprietary and open access in full detail, allowing future users to modify and refine the method as guided by practical experience.
منابع مشابه
Cardiovascular outcome associations among cardiovascular magnetic resonance measures of arterial stiffness: the Dallas heart study
BACKGROUND Cardiovascular magnetic resonance (CMR) has been validated for the noninvasive assessment of total arterial compliance and aortic stiffness, but their associations with cardiovascular outcomes is unknown. The purpose of this study was to evaluate associations of CMR measures of total arterial compliance and two CMR measures of aortic stiffness with respect to future cardiovascular ev...
متن کاملDoppler echocardiographic measurement of aortic valve area in aortic stenosis: a noninvasive application of the Gorlin formula.
Thirty adult patients with aortic stenosis had Doppler echocardiography within 1 day of cardiac catheterization. Noninvasive measurement of the mean transaortic pressure gradient was calculated by applying the simplified Bernoulli equation to the continuous wave Doppler transaortic velocity recording. Stroke volume was measured noninvasively by multiplying the systolic velocity integral of flow...
متن کاملIncreased stroke volume and aortic stiffness contribute to isolated systolic hypertension in young adults.
Isolated systolic hypertension is a common condition in individuals aged older than 60 years. However, isolated systolic hypertension has also been described in young individuals, although the mechanisms are poorly understood. We hypothesized that in young adults, isolated systolic hypertension and essential hypertension have different hemodynamic mechanisms and the aim of this study was to tes...
متن کاملImproved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement
BACKGROUND Pressure contour analysis is commonly used to estimate cardiac performance for patients suffering from cardiovascular dysfunction in the intensive care unit. However, the existing techniques for continuous estimation of stroke volume (SV) from pressure measurement can be unreliable during hemodynamic instability, which is inevitable for patients requiring significant treatment. For t...
متن کاملPulse Wave Velocity and Cardiac Output vs. Heart Rate in Patients with an Implanted Pacemaker Based on Electric Impedance Method Measurement
The methods and device for estimation of cardiac output and measurement of pulse wave velocity simultaneously is presented here. The beat-to-beat cardiac output as well as pulse wave velocity measurement is based on application of electrical impedance method on the thorax and calf. The results are demonstrated in a study of 24 subjects. The dependence of pulse wave velocity and cardiac output o...
متن کامل